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Module 1 Elements

Elements
1.1 What are Sets?

The most primitive entities in mathematics are called sets. Intuitively, a set can be likened to a
physical “collection” of distinct things. The things that make up a set are called its members.
It might come to you as a surprise to learn that some words like “set” and “member” actually
are undefined in mathematics. To define these words, reference would have to be made to
mathematical entities of a more primitive order, which in turn would have to be defined in
terms of mathematical entities of a still more primitive order, and so on. Evidently, the process
must terminate at some stage. The language of mathematics terminates at the words “set” and
“member”.

1.2 The Symbolism of Sets

Typically, sets are denoted by upper case letters. The names of the members are enclosed in
curly braces. For example:

A = {All positive even integers}
B = {All even integers between 7 and 17}
C = {All real numbers greater than -2 and less than or equal to 5}

In many cases it is possible to display all the members of a set by way of a sequential list. If so,
the names of the members are separated by commas. Examples:

A = {2, 4, 6, 8, 10, . . .}
B = {6, 8, 10, 12, 14, 16}

The members of the set C in the first example are too many (and too crowded) to permit being
displayed as a sequential list. In this case we can employ “set-builder notation” to identify the
set:

C = {x |x is a real number and − 2 < x ≤ 5}

Similarly, the set A above can be displayed using set-builder notation as follows:
A = {x |x = 2n where n is a positive integer}

A set (like a club) is determined completely by its membership, without regard to order. Thus,
two sets are equal if and only if they have the same members. Examples:

{1, 2, 3} = {3, 1, 2}
{x |x is a real number and x2 = 25} = {−5, 5}

The symbol ∈ is used to denote membership. Thus
2 ∈ {3, 1, 2}
5 /∈ {3, 1, 2}
2000 ∈ {2, 4, 6, 8, 10, . . .}√

7 ∈ {x |x is a real number and − 2 < x ≤ 5}
−2 /∈ {x |x is a real number and − 2 < x ≤ 5}
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We say that the set S is a subset of the set T , symbolized by S ⊆ T , if and only if every
member of S is a member of T . For instance:

{1, 3, 4} ⊆ {1, 2, 3, 4, 5}
{6, 8, 10, 12, 14, 16} ⊆ {2, 4, 6, 8, 10, . . .}

If we want to emphasize that S is a proper subset of T , that is S ⊆ T but S 6= T , then we
write S ⊂ T .

Arguably, the most important set in mathematics is the empty set, denoted by the symbol ∅ .
The empty set is distinguished by the property that it possesses no members. It behaves like
an empty shell, and serves roughly the same function in the theory of sets as does the special
integer 0 in the theory of numbers. The following properties of the empty set are easily verified:

1. If x is any mathematical entity then x /∈ ∅ .
2. If S is any set, then ∅ ⊆ S .
3. ∅ = {x |x 6= x} .

The “size” of a set is specified by its cardinality. By definition, the cardinality of the set
{1, 2, 3, . . . , n− 1, n} is n . By universal agreement, two sets S and T are said to have the
same cardinality if and only if the members of S can be paired in one-to-one correspondence
with the members of T . For instance:

card({a, b, c}) = card({x, y, z}) = card({1, 2, 3}) = 3

As expected, the cardinality of the empty set is defined to be 0 . A set whose cardinality is a
non-negative integer is called finite, otherwise it is called infinite. For instance, the sets

M = {2, 4, 6, 8, 10, 12, . . .}
N = {1, 2, 3, 4, 5, 6, . . .}

are infinite sets. However, since the members of M can be paired in one-to-one correspondence
with the members of N , they are seen to possess the same cardinality.

To represent the cardinalities of infinite sets, mathematicians have manufactured what are called
transfinite numbers. The smallest tansfinite number is ℵ0 , representing the cardinality of the
special set {1, 2, 3, 4, . . .} . The transfinite numbers form an infinite ascending hierarchy:

ℵ0 < ℵ1 < ℵ2 < ℵ3 < . . .

1.3 Operations on Sets

In this section we review some of the basic operations that can be applied to sets to generate new
sets. Our treatment is brief and informal. For a more rigorous exposition, the reader may refer
to the excellent book by Smith, Egen and St. Andre: A Transition to Advanced Mathematics.

Five basic operations are commonly applied to sets to generate new sets:

(a) The complementary set operation, denoted by the symbol ˜ (eg. Ã )
(b) The power set operation, denoted by the symbol P (eg. P(A) )
(c) The union operation, denoted by the symbol ∪ (eg. A ∪B )
(d) The intersection operation, denoted by the symbol ∩ (eg. A ∩B )
(e) The Cartesian product operation, denoted by the symbol × (eg. A×B )
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Of the five operations listed above, the first two are of the unary type and the remaining three
are of the binary type. In general, an operation is called unary if it can operate on only a single
object at a time to generate a new object. Similarly, a operation is called binary if it can operate
on a pair of objects at a time to generate a new object. For example, in the ordinary system of
numerical arithmetic the operation − (opposite) is unary, while the operations + (addition)
and × (multiplication) are binary.

Without loss of generality, we may assume that all sets considered in this section are subsets of
a certain fixed set U , called the universal set. With the universal set in mind, the complement
of any set A is defined as the set of members of U which are not members of A :

Ã = {x |x ∈ U and x /∈ A}

Ex: if U = {1, 2, 3, 4, 5, 6, 7} and A = {1, 2, 4, 7} then Ã = {3, 5, 6} .

The power set of a set C is defined as the set of all subsets of C .

P(C) = {X |X ⊆ C }

Ex: if C = {1, 2, 4} then P(C) = {∅, {1}, {2}, {4}, {1, 2}, {1, 4}, {2, 4}, {1, 2, 4}} .

The union of two sets A and B is defined as the set whose members belong to either A or B .

A ∪B = {x |x ∈ A or x ∈ B }

Ex: if A = {1, 2, 4, 7} and B = {1, 2, 3, 4, 5} then A ∪B = {1, 2, 3, 4, 5, 7} . Keep in mind that
in the language of mathematics the word “or” is always used in the non-exclusive sense. In other
words, “or” always means “and/or”.

The intersection of two sets A and B is defined as the set whose members belong to both A
and B :

A ∩B = {x |x ∈ A and x ∈ B }

Ex: if A = {1, 2, 4, 7} and B = {1, 2, 3, 4, 5} then A ∩B = {1, 2, 4} .

Two sets R and S are considered disjoint when they share no members in common.

R and S are disjoint if and only if R ∩ S = ∅

Ex: The sets R = {1, 2, 3} and S = {5, 7} are disjoint.

The Cartesian product of two sets C and D is defined as the set of all ordered pairs whose first
component is a member of C and whose second component is a member of D .

C ×D = {(c, d) | c ∈ C and d ∈ D}

Ex: if C = {1, 2, 4} and D = {2, 5} then C ×D = {(1, 2), (2, 2), (4, 2), (1, 5), (2, 5), (4, 5)} .

Keep in mind that two ordered pairs are equal if and only if the corresponding components are
equal. For instance, (1, 2) 6= (2, 1) . Hence the Cartesian product is not a commutative operation.
In other words, the statement C ×D = D × C is not valid in all cases.
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The notion of ordered pair can be generalized to the notion of ordered n -tuple. By definition,
an ordered n -tuple is an expression of the form (x1, x2, . . . , xn) where the components xi may
be mathematical entities of any type (usually numbers). Two ordered n -tuples are considered
equal if and only if the corresponding components are equal.

(x1, x2, . . . , xn) = (y1, y2, . . . , yn) if and only if xi = yi , i = 1, 2, . . . , n

If n ≥ 2 , the Cartesian product of n copies of a set X , denoted by the expression Xn , is
defined as the set of all n -tuples whose components are members of X . For the special case
n = 1 , we define X1 = X .

Xn = {(x1, x2, . . . , xn) |xi ∈ X, i = 1, 2, . . . , n}

Ex: If X = {1, 2} , X3 = {(1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (2, 2, 1), (2, 1, 2), (1, 2, 2), (2, 2, 2)}

The following list of propositions serves as a minimal synopsis of the basic properties of sets and
the elementary relations that hold between them. This list is not meant to be exhaustive. Every
one of these propositions can be proved with a minimum of effort using only the raw definitions
and elementary logic. Every student of mathematics should be completely familiar with these
propositions and should be able to produce their proofs without the slightest hesitation.

Let A , B and C be sets. Then

(a) A ∪∅ = A

(b) A ∩∅ = ∅
(c) A ⊆ A ∪B

(d) A ∩B ⊆ A

(e) A ∪B = B ∪ A

(f) A ∩B = B ∩ A

(g) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

(h) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

(i) ˜A ∪B = Ã ∩ B̃

(j) ˜A ∩B = Ã ∪ B̃

(k) A×∅ = ∅
(l) A× (B ∪ C) = (A×B) ∪ (A× C)

(m) A× (B ∩ C) = (A×B) ∩ (A× C)

If A and B are finite sets, then:

(n) card(A ∪B) = card(A) + card(B)− card(A ∩B)

(o) card(A×B) = card(A) · card(B)

(p) card (P(A)) = 2card(A)

(q) card (An) = (card(A))n
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1.4 Special Numerical Sets

The most basic family of numbers is the set of natural numbers, denoted by the symbol N .

N = {1, 2, 3, 4, 5, 6, . . .}

Although the set N is closed under the common operations of addition and multiplication, which
is to say that the sum and product of any two natural numbers is again a natural number, it
is not closed under the operation of subtraction. For instance, 2− 5 is not a natural number.
Consequently, unless we venture outside of the set of natural numbers, it is not possible to solve
a simple equation such as 5 + x = 2 . The smallest numerical set containing the natural numbers
and admitting solutions to any equation of the form n + x = m , where m, n ∈ N , is the set of
integers, denoted by the symbol Z .

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

Although the set Z is closed under the operations of addition, subtraction and multiplication, it
is not closed under the operation of division. For instance, 2÷ 5 is not an integer. Consequently,
unless we venture outside of the set of integers, an equation as simple as 5x = 2 cannot be solved.
The smallest numerical set containing Z and admitting solutions to any equation of the form
nx = m , where m, n ∈ Z , n 6= 0 , is the set of rational numbers, denoted by the symbol Q .

Q =
{
x

∣∣∣∣ x =
m

n
, where m, n ∈ Z, and n 6= 0

}
The set Q is closed under the four basic operations of addition, subtraction, multiplication
and division. Any system of numbers which is closed under these four basic operations and
on which these operations conform to certain reasonable conditions (including commutativity,
associativity and distributivity) is called a field. Thus, Q is the smallest field containing Z .

To the mathematicians of antiquity (especially Pythagoras, circa 500 B.C.) it came as a great
shock to discover that the set Q is too sparse to admit solutions to some elementary algebraic
equations. For instance, the equation x2 = 5 cannot be solved unless we venture outside of
Q . In other words,

√
5 is not a rational number. But even if we enlarge Q by appending to

it the solutions of all possible algebraic equations, the resulting system of numbers still is not
rich enough to permit values to be assigned to the outcomes of certain elementary numerical
processes. For instance, consider the following sequence of rational numbers:(

1 + 1
1

)1
,

(
1 + 1

2

)2
,

(
1 + 1

3

)3
,

(
1 + 1

4

)4
, . . . ,

(
1 + 1

n

)n
, . . .

As n →∞ , this sequence of rational numbers converges to a specific value e ≈ 2.718281828 . . . .
The striking fact that no algebraic equation can exist to which this special number e is a solution
was proved in 1873 by the French mathematician Charles Hermite. Numbers of this kind, of
which there are infinitely many, are called transcendental. The set of real numbers, denoted by
the symbol R , consists precisely of all numbers that can be generated as the limits of sequences
of rational numbers.

R = {x |x equals the limit of a sequence in Q }
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Equipped with the usual operations of addition, subtraction, multiplication and division, the set
R turns out to be a field. Moreover, every convergent sequence of real numbers converges to
a real number. Mathematicians use a special phrase to refer to a state of affairs such as this.
A set of numbers having the property that every convergent sequence converges to a number in
the set is said to be topologically closed. The word “topological” is roughly synonymous with
the word “spatial”. To see why the word “topological” is pertinent here, recall that the set of
real numbers can be modeled by a continuous “number line” (a purely spatial entity). Since the
real number line has no holes, it follows that no bounded sequence of points on the number line
can converge to a point outside of the number line.

However, from an algebraic point of view, the set R still exhibits a serious deficiency. It is
not algebraically closed. For example, the simple algebraic equation x2 = −5 cannot be solved
unless we venture outside of R . This deficiency is rectified by appending to R all expressions
of the form z = x + iy where x, y ∈ R and where i =

√
−1 . The resulting set is the set of

complex numbers, denoted by the symbol C .

C = {z | z = x + iy where x, y ∈ R }

Equipped with the usual operations of addition, subtraction, multiplication and division, the set
C turns out to be a field. But, unlike the field Q , the field C is topologically closed (every
convergent sequence of complex numbers converges to a complex number). And, unlike the
field R , the field C is algebraically closed (every polynomial equation with complex coefficients
possesses a solution in the field of complex numbers). The latter assertion is known as the
Fundamental Theorem of Algebra.

Finally, we summarize the progression of extensions starting with N and ending with C :

N ⊂ Z ⊂ Q ⊂ R ⊂ C
In some important ways this progression mirrors the evolution of the number concept from
ancient to modern times.

1.5 Rings and Fields

By a ring we mean an algebraic system consisting of a set R and two binary operations +
and × (addition and multiplication), which jointly are governed by a specific set of rules called
the ring axioms. The ring axioms are modeled on the usual rules of arithmetic satisfied by the
integers. However, the elements of the set R need not be numbers. They could be matrices,
functions, or some other species of objects.

THE RING AXIOMS

[1] R is closed under addition (if x, y ∈ R then x + y ∈ R ).

[2] R is closed under multiplication (if x, y ∈ R then xy ∈ R ).

[3] There exists a special element 0 ∈ R such that x + 0 = x for all x ∈ R .

[4] Addition is commutative in R (x + y = y + x for all x, y ∈ R ).

[5] Addition is associative in R ( (x + y) + z = x + (y + z) for all x, y, z ∈ R ).
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[6] For every x ∈ R there exists −x ∈ R such that x +−x = 0 (existence of opposites).

[7] Multiplication is associative in R ( (xy)z = x(yz) for all x, y, z ∈ R ).

[8] If x, y, z ∈ R , then x(y + z) = xy + xz (left distributivity of mult. over addition).

[9] If x, y, z ∈ R , then (y + z)x = yx + zx (right distributivity of mult. over addition).

A ring can be either finite or infinite depending on whether the underlying set R is finite or
infinite. In the event that the dominant operation × (multiplication) is commutative (xy = yx
for all x, y ∈ R ) then the ring itself is called commutative. In the event that a multiplicative
identity element 1 ∈ R exists satisfying the condition x · 1 = 1 · x = x for all x ∈ R , then R
is called a ring with identity or ring with unity.

Rings pervade all branches of mathematics. The following are some common examples of rings:

(a) Each of the special numerical sets Z , Q , R and C (equipped with the usual operations
of multiplication and addition) is an infinite commutative ring with identity.

(b) The numerical set E = {. . . ,−6,−4,−2, 0, 2, 4, 6, . . .} consisting of the even integers
(equipped with the usual operations of multiplication and addition) is an infinite commu-
tative ring without identity.

(c) The set M2(Z) consisting of all 2× 2 matrices with integer entries (equipped with
the usual operations of matrix multiplication and matrix addition) is an infinite non-
commutative ring with identity.

(d) The set M2(E) consisting of all 2× 2 matrices with even integer entries (equipped with
the usual operations of matrix multiplication and matrix addition) is an infinite non-
commutative ring without identity.

(e) The finite set Z3 = {0, 1, 2} equipped with the operations of multiplication and addition
(mod 3) is a finite commutative ring with identity.

(f) The set M2 (Z3) consisting of all 2× 2 matrices with entries in Z3 and equipped with
the operations of matrix multiplication and matrix addition (mod 3) is a finite non-
commutative ring with identity.

Let R be a ring with identity (not necessarily commutative). An element x ∈ R is said to be in-
vertible if a corresponding element x−1 ∈ R exists such that x−1 · x = x · x−1 = 1 . The element
x−1 , if it exists, is called the multiplicative inverse or the reciprocal of x in R . Examples:

(a) In Z the only invertible elements are 1 and −1 .

(b) In Q , R and C all nonzero elements are invertible.

(c) In M2(Z) the element
[

2 5
3 7

]
is invertible, while the element

[
2 3
7 5

]
is not invertible.

A commutative ring with identity in which every nonzero element is invertible is called a field.
Within a field, it is possible always to solve the linear equation ax = b , provided a 6= 0 . The

unique solution is x = a−1b , which also may be expressed in fractional notation as x =
b

a
.
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The following are some common examples of fields:

(a) Each of the special numerical sets Q , R and C (equipped with the usual operations of
multiplication and addition) is a field.

(b) The numerical set Q (
√

2) = {x |x = a + b
√

2 where a, b ∈ Q} , equipped with the usual
operations of multiplication and addition, is a field. The field Q (

√
2) is an extension of

the field Q (since Q ⊂ Q (
√

2) ), and it is a subfield of R (since Q (
√

2) ⊂ R ).

(c) The set Z5 = {0, 1, 2, 3, 4} , equipped with the operations of multiplication and addition
(mod 5), is a finite field. In fact, if p is any prime number, then Zp = {0, 1, 2, . . . , p− 1}
is a field. Finite fields are of special importance in Number Theory and in Coding Theory.

1.6 The Principle of Mathematical Induction

Should ever you need, or feel inclined, to provide proof that a specific claim about the natural
numbers is valid for all n ∈ N , a good strategy to keep in mind is the Principle of Mathematical
Induction. In general, a proof by induction proceeds as follows:

I. Show that Claim(1) is true.

II. Show that whenever Claim(k) is true then Claim(k + 1) also is true.

III. Conclusion: Claim(n) is true for all n ∈ N .

Step II, called the inductive step, is the only part of the proof that might call for some creative
reasoning. Naturally, if Claim(n) is not valid for some n ∈ N , then this step will not be feasible.
The following are some examples of proof by induction.

(a) Claim: n < 2n for all n ∈ N .

Proof: To begin, we must establish Claim(1). That is, we must verify that 1 < 21 .
Plainly, this is true, since 1 < 2 . Next, we must show that if Claim(k) holds, then
Claim(k + 1) also holds. That is, we must show that if k < 2k , then k + 1 < 2k+1 .
Starting with k < 2k , and multiplying both sides by 2, we get 2k < 2k+1 . Since k ∈ N ,
it follows that k + 1 ≤ k + k = 2k , which, when compared with the previous inequality,
yields k + 1 < 2k+1 . Thus we conclude that n < 2n for all n ∈ N .

(b) Claim: The formula 1 + 2 + 3 + · · ·+ n =
n2 + n

2
holds for all n ∈ N .

Proof: To begin, we must verify Claim(1). That is, we must verify that 1 = (12 + 1)/2 .
Plainly, this is true, since 1 = 1 . Next, we must show that if Claim(k) is true, then
Claim(k+1) is also true. That is, we must show that if 1 + 2 + 3 + · · ·+ k = (k2 + k)/2 ,
then 1 + 2 + 3 + · · ·+ k + k + 1 = ((k + 1)2 + k + 1)/2 . It is a straightforward exercise
to show that the second formula (Claim(k + 1)) follows from the first formula (Claim(k))
simply by adding k + 1 to both sides. Thus we conclude that the formula is valid for all
n ∈ N .
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(c) Claim: If A is a finite non-empty set and card(A) = n , then card (P(A)) = 2n .

Proof: To begin, suppose card(A) = 1 , say A = {a} . Then P(A) = {∅, {a}} . So
card (P(A)) = 21 . This establishes the claim for n = 1 . Next, suppose it has already
been established that card (P(A)) = 2k whenever card(A) = k . Let B be a set of car-
dinality k + 1 , say B = A ∪ {b} where card(A) = k . Let C be a typical subset of B .
Then either b ∈ C or b /∈ C . If b /∈ C , then C must be a subset of A . Thus there
are exactly 2k subsets of B which do not contain the element b . On the other hand, if
b ∈ C , then C must have the form C = D ∪ {b} , where D ⊆ A . Thus there are exactly
2k subsets of B which contain the element b . Therefore the total number of subsets of
B equals 2k + 2k = 2k+1 . By the Principle of Mathematical Induction, we conclude that
the claim is true for all n ∈ N .

1.7 Exercises

1. Decide if the statement is true or false.

(a) {1} ∈ {1, 2, 3}
(b) P(∅) = ∅
(c) 1 ∈ {{1}, {2}, {3}}
(d) {1, 2} ∈ P ({1, 2, 3})
(e) card (P(∅)) = 1

(f) {{1}, {2}, {3}} ∩ {1, 2, 3} = ∅
(g) 1 ∈ {{1, 2, 3}}
(h) {0} = ∅
(i) {x ∈ Z |x + 1 < 1} = ∅
(j) {x ∈ R | 3x = x} = ∅

2. Decide if the claim is true or false. If true, provide a rigorous proof. If false, give a specific
counterexample. The symbols A , B and C denote sets.

(a) Claim: If A ∩B = ∅ then card(A ∪B) = card(A) + card(B)

(b) Claim: If A ⊆ B ∪ C then A ⊆ B or A ⊆ C

(c) Claim: If A ⊆ B then Ã ⊆ B̃

(d) Claim: P (A ∪B) = P (A) ∪ P (B)

(e) Claim: P (A ∩B) = P (A) ∩ P (B)

3. Let A and B be sets such that card(A) = 5 , card(B) = 8 and card(A ∩B) = 3 . Determine
the cardinality of each of the following sets.

(a) A ∪B

(b) P (A)

(c) A×B

(d) A3

(e) P (A) ∪ P (B)
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4. Determine the cardinality of each of the following sets.

(a)
{
x ∈ N

∣∣∣ x2 ≤ 20
}

(b)
{
x ∈ Z

∣∣∣ x2 ≤ 20
}

(c)
{
(x, y) ∈ Z2

∣∣∣ x2 + y2 = 25
}

(d)
{
x ∈ Z

∣∣∣ 3x3 − 8x2 + 5x = 0
}

(e)
{
x ∈ R

∣∣∣ x6 − 5x4 + 6x2 − 1 = 0
}

5. Test each of the following sets for closure under the usual numerical operations of addition
(+) and multiplication (×) . Justify your conclusions.

(a) {0, 3, 6, 9, 12, . . .}
(b) {1, 3, 5, 7, 9, . . .}
(c) {. . . ,−4,−3,−2,−1, 0}
(d) {0, 1,−1, i,−i}

6. Find a set X such that card(X) = 3 and such that every member of X is a subset of X .

7. Find the multiplicative inverse (reciprocal) of each non-zero element in the finite field
Z7 = {0, 1, 2, 3, 4, 5, 6} .

8. Find the multiplicative inverse (reciprocal) of:

(a) the element 1 + 3
√

2 in the field Q(
√

2)

(b) the element 3− 4i in the field Q(i) = {x |x = a + bi where a, b ∈ Q}

(c) the element
[

4 5
3 4

]
in the ring M2(Z)

9. Show that the finite ring Z6 = {0, 1, 2, 3, 4, 5} (equipped with the operations of addition and
multiplication (mod 6)) is not a field.

10. Use the Principle of Mathematical Induction to prove each of the following claims:

(a) If a ∈ R and a > 0 , then, for every n ∈ N , 1 + na ≤ (1 + a)n .

(b) For every n ∈ N , 6n − 1 is divisible by 5.

(c) For every n ∈ N , 1 + 3 + 5 + 7 + · · ·+ 2n− 1 = n2.

11. Let A and B be finite sets such that card(A) = n , card(B) = m , and n ≥ m .

(a) Show that the number of functions from A to B equals mn .

(b) Use the above result (a) to show that card(P(A)) = 2n .
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