
Module 5 The Central Limit Theorem

The Central Limit Theorem

5.1 The Fundamental Theorem of Statistics

Statistics is the science that enables us to infer facts about large populations from limited samples
of data. For instance, suppose we want to determine the average annual income of American
households. One approach is to conduct a comprehensive survey of all American households.
This approach would yield a very precise answer, but the cost would be huge. Another approach,
less accurate, but more practical, is to conduct a limited survey of a relatively small “random
sample” of households, say 500. Suppose, for the sake of argument, that our survey of 500
households yields an average annual income of $45,000. What does this tell us about the average
annual income of all American households? Based on this limited sample, to what extent is it
valid to say that the average American household has an annual income of $45,000? Statistics
can answer this question precisely. Statistics can even determine the exact degree to which we
can trust our findings.

The Central Limit Theorem is the principle that enables us to determine the degree of confidence
to which we can trust the results of a limited survey. Roughly speaking, the Central Limit
Theorem asserts that “sample means” are distributed “nearly normally” with a certain mean and
standard deviation closely related to the mean and standard deviation of the whole population.
The larger the samples, the closer is the distribution of their means to a normal distribution, and
the larger an individual sample, the more likely it is that its mean accurately reflects the mean of
the population. The Central Limit Theorem is important enough to be called the “Fundamental
Theorem of Statistics”, although, reader be cautioned, this designation is not widely recognized
among statisticians.

5.2 Elements of Statistics

We begin by recalling some basic definitions. By a population, we mean a set of items, cases,
or trials, each possessing a property that can be observed, evaluated and recorded. Typically,
the property to be evaluated and recorded is represented by a numerical variable, say x . For
a finite population having N members, the population mean µ(x) and the population standard
deviation σ(x) are defined by the formulas:

µ(x) =
1

N

∑
x σ2(x) =

1

N − 1

∑
(x− µ)2

These sums are understood to range over one measurement x for each member of the population.

By a sample, we mean a subset of a population. A sample is said to be of size n if it has
n members. The sample mean x̄ and the sample standard deviation s(x) are defined by the
formulas:

x̄ =
1

n

∑
x s2(x) =

1

n− 1

∑
(x− x̄)2
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Ex: Suppose the population has 11 members, and the values of x are given by the data list:

x = 0, 1, 3, 3, 4, 6, 6, 6, 7, 9, 10

By direct calculation, we get
∑

x = 55 , so that µ(x) = 55/11 = 5 . To compute the stan-
dard deviation, it is convenient to set up a table like the one below:

x x− µ (x− µ)2

0 -5 25
1 -4 16
3 -2 4
3 -2 4
4 -1 1
6 1 1
6 1 1
6 1 1
7 2 4
9 4 16
10 5 25

Therefore
∑

(x− µ)2 = 98 , so that σ2 = 98/10 = 9.8 and σ =
√

9.8 ≈ 3.1305 .

By a statistical experiment we mean a repeatable act of measurement whose outcome is, to
some extent, unpredictable. For instance, when a six-faced die is rolled, the value (1 through 6)
of the up face is unpredictable. Thus the act of rolling a six-faced die qualifies as a statistical
experiment. The concept of “statistical experiment” applies to many different kinds of situations.
For instance, the process of selecting a member at random from a large population and performing
a measurement of a certain variable x qualifies as a statistical experiment. Similarly, a sample of
size n can be thought of as a sequence of n repetitions of the experiment of selecting a random
member from the population.

In general, the possible numerical outcomes of a statistical experiment are represented by a
random variable x . A random variable is said to be continuous if it can assume any value in
an interval of real numbers, with no interruptions. Analogously, a random variable is said to
be discrete if it can assume only certain consecutive values separated by “forbidden intervals”.
For instance, the random variable representing the weight of a snowflake is continuous, as two
snowflakes can differ in weight by an arbitrarily small amount. On the other hand, the random
variable representing the number of credit cards held by a random individual is discrete since its
values are restricted to the discrete set {0, 1, 2, 3, . . .} .

The frequency distribution of a random variable x is found by counting the number of times each
of its possible values occurs in a sequence of repetitions of the underlying experiment. Typically,
some values occur more frequently than others. For instance, if a pair of dice is rolled and the sum
x of the two up faces is recorded, then the possible values of x are {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} .
However, not all of these values are equally likely. For the sake of illustration, suppose the double
dice rolling experiment has been repeated 360 times. The resulting frequency distribution of x
(defined as the sum of the up faces) might look something like the following:
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x 2 3 4 5 6 7 8 9 10 11 12
Freq. 11 19 32 37 53 58 49 42 30 21 8

The relative frequency distribution of a random variable is obtained by dividing the observed
frequencies by the total number of data points. For the double dice rolling experiment, repeated
360 times, we obtain the following relative frequency distribution:

x 2 3 4 5 6 7 8 9 10 11 12
Rel. Freq. .031 .053 .089 .103 .147 .161 .136 .117 .083 .058 .022

The relative frequencies displayed above are calculated on the basis of repeated experimentation.
They represent approximations to the true probabilities. The more often the experiment is
repeated, the more accurately the relative frequencies reflect the true probabilities. In fact, by a
simple theoretical analysis, it can be shown that the true probabilities p(x) for the double dice
rolling experiment are as follows:

x 2 3 4 5 6 7 8 9 10 11 12
p(x) 1/36 1/18 1/12 1/9 5/36 1/6 5/36 1/9 1/12 1/18 1/36

When statisticians talk about the probability distribution of a random variable, it is tacitly
assumed that the underlying experiment can be repeated as often as desired, yielding, in the
limit, relative frequencies that are equal to the true probabilities.

For a discrete random variable x , the mean µ(x) (also called the expected value) and the
standard deviation σ(x) are defined by the formulas:

µ(x) =
∑

p(x)x

σ2(x) =
∑

p(x)(x− µ)2 =
∑

p(x)x2 − µ2 ,

where these sums are understood to range over all possible values of x .

If the probabilities p(x) are approximations based on a limited number of repetitions of the
underlying experiment, then the symbols x̄ and s(x) are used to denote the mean and standard
deviation, respectively. The actual formulas for x̄ and s(x) are the same as the formulas for
µ(x) and σ(x) , with x̄ instead of µ in the formula for s(x) .

Ex: For the double dice rolling experiment, using the exact probabilities, we get

µ(x) =
∑

p(x)x = 7.000

σ2(x) =
∑

p(x)(x− µ)2 = 5.833

σ(x) = 2.415

Using the experimental relative frequencies based on 360 repetitions, we get

x̄ =
∑

p(x)x = 6.974

s2(x) =
∑

p(x)(x− x̄)2 = 5.8113

s(x) = 2.411
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5.3 Probability Density Functions

For a discrete random variable x , the relative frequency or probability of each of its possible
values can be calculated by repeated experimentation, or, occasionally, by theoretical reasoning.
As we saw in the previous section, the distribution of x is completely specified by listing the
probability of each of its possible values. However, for a continuous random variable, because the
possible values for x are so numerous and so closely packed, the relative frequency or probability
of any specific value of x is indistinguishible from 0. For instance, if x represents the height of
a typical American adult male, then the likelihood of finding a subject whose height is exactly
69.500000000 inches is exactly 0. However, if someone asks the question “what is the probability
of finding a subject whose height in inches lies somewhere in the interval 69.4 ≤ x ≤ 69.6 ?”,
then the answer can be found precisely by calculating the percent of subjects whose heights lie
in this range. The answer is a specific positive real number.

In general, the probability distribution of a continuous random variable x is represented by a
probability density function f(x) having the following properties:

1) f(x) ≥ 0 for all x ∈ R .

2) The area below the graph of y = f(x) and above the x -axis is exactly equal to 1.

3) The probability of x lying in the interval a ≤ x ≤ b is equal to the area of the region
under the graph of y = f(x) , above the x-axis, and between x = a and x = b .

Properties 2) and 3) can best be expressed by the formulas

a)
∫ ∞
−∞

f(x) dx = 1

b) p(a ≤ x ≤ b) =
∫ b

a
f(x) dx

In terms of the probability density function f(x) , the mean µ and standard deviation σ of the
continuous random variable x are defined by the formulas

µ =
∫ ∞
−∞

xf(x) dx σ2 =
∫ ∞
−∞

(x− µ)2f(x) dx

Ex: Consider the probability density function defined by:

f(x) =


0 if x < 0
x if 0 ≤ x ≤ 1
2− x if 1 ≤ x ≤ 2
0 if x > 2

The reader can easily verify the following calculations at his/her leisure:

µ =
∫ 2

0
xf(x) dx =

∫ 1

0
x2 dx +

∫ 2

1
x(2− x) dx = 1

σ2 =
∫ 2

0
(x− µ)2f(x) dx =

∫ 1

0
(x− 1)2x dx +

∫ 2

1
(x− 1)2(2− x) dx = 1

6

p(.5 ≤ x ≤ 1.75) =
∫ 1.75

.5
f(x) dx =

∫ 1

.5
x dx +

∫ 1.75

1
(2− x) dx = .84375
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5.4 Normal Distributions

The most natural and important distributions in statistics are the normal distributions. A nor-
mal distribution is completely determined by its mean and standard deviation. If a normal
distribution has mean µ and standard deviation σ , then its probability density function is

f(x) =
1

σ
√

2π
e−

1
2(

x−µ
σ )

2

The graph of this function has a chracteristic shape often refered to as a “bell curve”.

µ

Examples of normal distributions are found everywhere in nature. For instance, the heights of
adult American males are normally distributed, as are their weights. Most mental test scores
such as SAT scores and IQ scores are normally distributed. In fact, just about any random
variable whose value is determined by multiple random influences is normally distributed.

As the reader may recall from elementary courses in statistics, a normal distribution of mean µ
and standard deviation σ always satisfies the so-called “empirical rule”:

a) p(µ− σ ≤ x ≤ µ + σ) ≈ .68

b) p(µ− 2σ ≤ x ≤ µ + 2σ) ≈ .95

c) p(µ− 3σ ≤ x ≤ µ + 3σ) ≈ .997

In the interest of notational brevity, if a random variable x is known to be normally distributed
with mean µ and standard deviation σ , then we may want to express this fact symbolically as

dist(x) = N (µ, σ)

Ex: Suppose dist(x) = N (20, 3) . Using the empirical rule and the symmetry of the bell curve,
we can derive the following selected facts, which the reader is advised to verify

p(17 ≤ x ≤ 23) ≈ .68

p(14 ≤ x ≤ 26) ≈ .95

p(x ≥ 26) ≈ .025

p(x ≥ 29) ≈ .0015

p(17 ≤ x ≤ 26) ≈ .815

42



Module 5 The Central Limit Theorem

Among the class of normal distributions, there is a very special one whose values can be found
tabulated in every statistics textbook, namely the standard normal distribution N (0, 1) . It
turns out that the probability values associated with any normal distribution N (µ, σ) can be
computed in terms of the probability values of N (0, 1) . The principle that enables us to do so
is the so-called Standardization Principle.

Standardization Principle: If dist(x) = N (µ, σ) and if z =
x− µ

σ
, then dist(z) = N (0, 1) .

In particular, p(a ≤ x ≤ b) = p

(
a− µ

σ
≤ z ≤ b− µ

σ

)
.

Ex: Suppose dist(x) = N (20, 3) and suppose we want to evaluate p(17.9 ≤ x ≤ 23.6) . We
begin by calculating the standardized z-scores of the endpoints of our interval, namely
(17.9− 20)/3 = −.7 and (23.6− 20)/3 = 1.2 . So p(17.9 ≤ x ≤ 23.6) = p(−.7 ≤ z ≤ 1.2) .
Now we turn to the standard normal table. Typically such tables display only the probabli-
ties for intervals of the form 0 ≤ z ≤ c . But we can exploit the symmetry of the bell curve
to calculate the probability of any interval. In this case, we can see proceed as follows:

p(−.7 ≤ z ≤ 1.2) = p(−.7 ≤ z ≤ 0) + p(0 ≤ z ≤ 1.2)

= p(0 ≤ z ≤ .7) + p(0 ≤ z ≤ 1.2)

= .2580 + .3849 = .6429

Therefore p(17.9 ≤ x ≤ 23.6) = .6429 .

5.5 The Central Limit Theorem and Applications

Let x denote a random variable associated with a large population. Assume that the probability
distribution of x , not necessarily normal, has mean µ and standard deviation σ . Consider the
set of all samples of size n selected from the population, and let x̄ denote the mean of a typical
such sample. The Central Limit Theorem gives information about the distribution of the sample
means x̄ .

The Central Limit Theorem: Under the above assumptions, let µ(x̄) denote the mean of
all the means of samples of size n , and let σ(x̄) denote the standard deviation of the sample
means. Then we have µ(x̄) = µ , σ(x̄) = σ/

√
n , and

dist(x̄) ≈ N (µ, σ/
√

n)

The approximation to a normal distribution becomes ever more accurate as n →∞ .

Ex: The National Fraternity of MΥ∆ has 20,000 members whose college GPA’s are distributed
with mean 2.8 and standard deviation 0.75. The fraternity is organized into 400 local chap-
ters with 50 members in each chapter. What percent of the chapters have average GPA’s
of at least 3.00?

Solution: Let x denote GPA. By the CLT, the average GPA’s x̄ of the chapters are
distributed like the normal distribution N (2.8, .75/

√
50) = N (2.8, 0.106) . By the Stan-

dardization Principle, p(x̄ ≥ 3.00) = p (z ≥ (3.00− 2.80)/0.106) = p(z ≥ 1.887) = 3% .
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The most powerful applications of the Central Limit Theorem are to questions having to do with
determining confidence intervals for estimates of population parameters when these estimates are
based on limited samples. For instance, suppose a random survey of 400 households is conducted
in the hope of determining, to a reasonable degree of accuracy, the average household income of
all American households. Intuitively it seems clear that the larger the sample, the more accurate
the result is likely to be. But who’s to say that a sample of size 400 is large enough to yield even
a crude estimate? Imagine, for the sake of illustration, that our survey produces a sample mean
of $45,000. How likely is it that the true mean income µ of all American households lies in
$40, 000 ≤ µ ≤ $50, 000 ? The Central Limit Theorem can provide answers to these and similar
questions.

Let x denote a random variable associated with a large population. Our aim is to estimate the
population mean µ by measuring the mean x̄ of a sample of size n . If we assume that the
sample standard deviation s is a reasonably accurate approximation to the population standard
deviation σ , then, by the Central Limit Theorem, we have

dist(x̄) ≈ N (µ, s/
√

n).

Therefore, by the Standardization Principle, we get

dist

(
x̄− µ

s/
√

n

)
≈ N (0, 1).

Now given a real number α , 0 < α < 1 , let zα/2 denote the value of z in the standard normal
distribution satisfying the relation

p(0 ≤ z ≤ zα/2) = 0.5− α/2.

In other words, if dist(z) = N (0, 1) , then

p(−zα/2 ≤ z ≤ zα/2) = 1− α.

Thus we have

p

(
−zα/2 ≤

x̄− µ

s/
√

n
≤ zα/2

)
= 1− α,

which is equivalent to the relation

p

(
x̄− zα/2

s√
n
≤ µ ≤ x̄ + zα/2

s√
n

)
= 1− α.

In the above relation, the number (1− α)100% is called the degree of confidence. The number
E = zα/2 · s/

√
n is called the margin of error. Thus, according to the above equation, we can

be confident at the (1− α)100% level that the true value of the population mean lies in the
interval x̄− E ≤ µ ≤ x̄ + E. Conversely, if we insist on a (1− α)100% level of confidence for

µ to lie in the interval x̄− E ≤ µ ≤ x̄ + E , then we must take n ≥
(
zα/2 · s/E

)2
.
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Ex: A random variable x is distributed with unknown mean µ and unknown standard devia-
tion. However, a sample of size 100 yields x̄ = 500 and s = 80 .

a) With what degree of confidence can we assert that 490 ≤ µ ≤ 510 .

b) With what degree of confidence can we assert that 480 ≤ µ ≤ 520 .

c) Determine a 95% confidence interval for µ .

d) How large a sample would we need if we wanted to estimate µ with 99% confidence and
a margin of error not exceeding 5 units?

Solution:
a) Here n = 100 , s = 80 , and E = 10 . Thus zα/2 = E

√
n/s = 1.25 . From the tables,

we get α/2 = p(z ≥ 1.25) = 0.1056 . Thus α ≈ 0.21 , so that 1− α ≈ .79 , which means
that the degree of confidence is approximately 79%.

b) Here n = 100 , s = 80 , and E = 20 . Thus zα/2 = E
√

n/s = 2.50 . From the tables,
we get α/2 = p(z ≥ 2.50) = 0.0062 . Thus α ≈ 0.0124 , so that 1− α ≈ .9876 , which
means that the degree of confidence is better than 98%.

c) Here n = 100 , s = 80 , and α = .05 . Thus α/2 = .025 . Using the tables, with
.025 = p(z ≥ zα/2) , we get zα/2 = 1.96 . Therefore E = zα/2 · s/

√
n = 15.68 . So the

corresponding 95% confidence interval is [484.32, 515.68] .

d) Here s = 80 , E = 5 , α = .01 , and α/2 = .005 . From the tables, we get zα/2 = 2.575 .

Therefore n ≥
(
zα/2 · s/E

)2
≈ 1700 . A sample of size at least 1700 would be needed.

5.5 Exercises

1. A discrete random variable x with values in the range {6, 7, 8, 9, 10} is distributed with the
following (incomplete) probability profile :

p(x = 6) = 0.10 p(x = 7) = 0.25 p(x = 8) = 0.15 p(x = 9) = 0.20

(a) Calculate p(x = 10)

(b) Calculate p(x ≥ 8)

(c) Calculate p(6 ≤ x ≤ 8)

(d) Calculate the mean µ(x)

(e) Calculate the standard deviation σ(x)

2. A continuous random variable x is distributed with probability density function

f(x) =
1

π

1

x2 + 1

(a) Sketch the graph of y = f(x) .

(b) Evaluate approximately p(0 ≤ x ≤ 1) .

(c) Evaluate approximately p(−2 ≤ x ≤ 2)

(d) Evaluate approximately p(x ≥ .5)
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3. A continuous random variable x is distributed with probability density function

f(x) =



0 if x < −1
0.5 + 0.5x if −1 ≤ x ≤ 0
0.5 if 0 ≤ x ≤ 1
1.0− 0.5x if 1 ≤ x ≤ 2
0 if x > 2

(a) Sketch the graph of y = f(x) .

(b) Find µ(x) .

(c) Find σ(x) .

(d) Evaluate exactly p(0 ≤ x ≤ 1.5) .

(e) Evaluate exactly p(−1 ≤ x ≤ 1)

(f) Evaluate exactly p(x ≥ .5)

4. Suppose the random variable x possesses a normal distribution with mean µ = 100 and
standard deviation σ = 15 . That is, dist(x)=N (100, 15) .

(a) Find p(x ≥ 120) .

(b) Find p(90 ≤ x ≤ 110) .

(c) Find p(x ≤ 70) .

(d) Find p(x ≥ 150) .

(e) Find p(95 ≤ x ≤ 105) .

5. Medium sized watermelons weigh an average (mean) of 5 lb each with a standard deviation
of 1.2 lb. The watermelons are packed for shipment in crates of 36. Thus, on average, the
typical crate weighs 180 lb. What percent of the crates weigh between 174 and 186 lb ?

6. The tail-lengths of the inhabitants of the distant planet of Mephiston are normally distributed
with unknown mean µ and unknown standard deviation. However, a random sample of 100
Mephistonians shows an average tail-length of 150 cm with standard deviation of 25 cm.

(a) Based on this sample, determine a 90% confidence interval for µ .

(b) How large of a sample would we need if we wanted to estimate µ with 95% confidence
and a margin of error not exceeding 2.5 cm?

7. The heights of freshly cut Douglas fir trees of the Grade A variety, supplied by Farmer Jim’s
Nursery, are distributed with mean µ = 7.5 ft and standard deviation σ = .5 ft. The trees
are shipped to vendors in lots of size 36. Let x̄ denote the average height of the trees in a
typical lot.

(a) Calculate p(7.4 ≤ x̄ ≤ 7.6) .

(b) Determine a 99% confidence interval for x̄ .
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8. The heights of medium-sized Frazier Fir Christmas trees are normally distributed with un-
known mean µ and unknown standard deviation σ . However, a random sample of 100 such
trees shows an average height of 84 inches with standard deviation of 6 inches.

(a) Based on this sample, determine a 90% confidence interval for µ .

(b) How large of a sample would we need if we wanted to estimate µ with 95% confidence
and a margin of error not exceeding 2 inches?

9. The weights of Supreme Deluxe Garden Fresh tomatoes are distributed with mean µ = 18
oz and standard deviation 4.2 oz. The tomatoes are shipped to supermarkets in packages of
three dozen. Let x̄ denote the average weight of the tomatoes in a typical package. Calculate
p(17 ≤ x̄ ≤ 19) .

10. The wing-spans of sugar plum fairies are distributed with unknown mean µ . However, a
specific random sample of 64 sugar plum fairies shows an average wing-span of 3.0 feet with
standard deviation 0.50 feet.

(a) Based on this sample, determine a 90% confidence interval for µ .

(b) Based on this sample, with what level of confidence could we infer that 2.80 ≤ µ ≤ 3.20 ?
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