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ABSTRACT

Data series that contain patterns are the expression of a set of rules that specify the pattern. In cases where the data series is
known but the rules are not known, the Kasai algorithm can analyze the data pattern and produce the complete set of rules that
described the data pattern observed to date.
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1. INTRODUCTION

Data points under study can be examined individually or in a
group. A datum carries its significance individually within
its own context. Data in a group carries significance both
at the datum and in terms of the datum’s participation in
the group. In this paper, we focus on data in group, specif-
ically, an ordered group where the position of the datum
in the sequence is also significant. This type of data group
is called a data series. Our objective is to detect patterns
of elements in a data series. For example, imagine we are
observing the behavior of an individual over a week. Each
element in the data series represents a behavior such as [eat
food], [greet friend], [go to work], and so on. We want to
identify a pattern such as [brush teeth] always happens after
[wake up]. The elements of the series are symbols; there is
no mathematical relationship between them, there is only an
order of occurrence.

The concept of order allows us to distinguish between two
types of series, random and systematic. A random data series
contains no patterns in the occurrence of datum within it. For
example, a data series such as P1 = [k, b, a, z, q, p, m] is
random because it contains no pattern. On the other hand, a
data series such as P2 = [k, a, b, k, a, b] is systematic as it

contains a pattern. The Kasai algorithm recognizes patterns
in systematic data series.

There are several types of systematic patterns in the environ-
ment. For example, we can consider weather. In the tem-
perate zone of Earth, there are four annual seasons; spring,
summer, fall and winter. These seasons repeat in the same
cycle. Within each season, there are also sub-seasons. For
example, in North America, we experience an Indian Sum-
mer in the fall. Consider the climate over 50,000 years. From
this perspective, we observe similar cycle of warming and
cooling. For example, ice ages last several thousand years,
followed by warming period of several thousand years. We
can also refer to an ice age as a season that possesses sub-
seasons.

An Epoch is the period in the pattern that it takes for it to
cycle. For example, the epoch is the year when we consider
the four seasons. When we consider the ice ages, the epoch
is 50,000 years. The annual epoch is a sub-epoch of this
longer epoch.

The detection of a pattern in a data series is a function of
the method used to detect it. For example, P1 does not have
a pattern in terms of its components. However, there is a
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pattern when one considers the relationships between [k, b,
a] in the alphabet and notices that the relationship is the same
as [z, q, p]. This relationship lets us predict what should
follow [m] if P1 is systematic. The pattern in P2 is obvious
and doesn’t depend on the lexical relationships of the letters.
Another way to make this observation is that detection meth-
ods cannot detect patterns they are not designed to detect.
The elements of the data pattern are symbols. We do not
assume there is an embedded relationship between them. Our
use of letters, for example, is not meant to imply a lexical
ordering. In this context, every element of the data series
must be considered. If the element can be detected, it is not
noise.

Figure 1. Reflexive pattern

When we consider the types of systematic patterns that can
be constructed, we identify two types of series we call reflex-
ive (see Figure 1) and periodic (see Figure 2). A reflexive
pattern uses the same symbol; P3 = [a, a, a, a, · · · ]. A peri-
odic pattern repeats a series of symbols; P4 = [a, b, c, a, b, c,
· · · ].

Figure 2. Periodic pattern

In the figures, the edge with arrow indicates that a sequence
repeats at some point. In the case of P3, it repeats immedi-
ately. In the case of P4, it repeats after the symbol [c], when
n = 3.

The next type of systematic pattern is composed of subse-
quences of symbols. We denote a subsequence using a capital
letter. A subsequence is a finite symbol series such as S = [a,
b, c]. A cyclical pattern occurs when a sequence periodically
occurs in the series. Consider the series P5 = [a, b, c, a, b, c,
a, b, k, a, b, c, a, b, c, a, b, k, · · · ]. It contains subsequences
S = [a, b, c] and R = [a, b, k]. A subsequence could be shown
as P5 = [S, S, R, S, S, R, · · · ] reducing it to a periodic pattern.
Cyclical patterns are periodic patterns of subsequences.

A cyclical pattern contains a cycle, which the repetition of
one of more subsequences. For example, in series P5, sub-
sequence S cycles once before subsequence R occurs. At
the symbol level, there are two occurrences of symbol [b]
before symbol [k] occurs. This edges capture this behavior
in Figure 3. In practice, edges are labelled with the cycle
count as in Figure 4.

Figure 3. Cyclical pattern

Figure 4. Labelled cyclical
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The graph in Figure 4 produces [a, b, c] on cycles 1 and
2, and [a, b, k] on cycle 3, ad infinitum, just like series P5.
We can visualize each sequence as a season, and a series of
sequences as an epoch. The seasons are occurring in a certain
order over an epoch. An epoch is the period over which all
sequences appear at least once, before starting again. Within

each season, there can be sub-season or sub-sub-season and
so on. A complex season has sub-seasons while a simple
season does not. This observation leads us to define a hybrid
pattern (see Figure 5) as one that contains any combination
of reflexive, periodic and cyclical patterns (The letters on the
edges denote the cycle count).

Figure 5. Hybrid pattern

The Kasai algorithm is a technique that processes a data se-
ries and derives the rules that produce the data series. A set
of rules that mirrors a data series has several advantages. It
acts as a memory because it captures the static and dynamic
characteristics of the data series. It enables the prediction of
future state of the data series based on the current state. It
supports comparison of data series using set operations and
graph analysis techniques which can be more efficient and
insightful than brute force comparisons. These advantages
become increasingly important as we face the data explosion
of the Internet of Things.

2. MATERIALS STUDIED
Finite state machines can be classified as deterministic and
non-deterministic.[1] Deterministic machines produce one
trace for any given input while non-deterministic machines
can produce multiple traces. Probabilistic state machines
have a probability assigned to each transition. The Kasai is
similar to a deterministic state machine in the sense that it
can reproduce one and only one input sequence. Similar to
the probabilistic state machine, its transitions carry attributes
that affect the selection of the transition based on the state of
the input.

Using VIATRA2 and Petri nets,[2] the RETE approach is
used for incremental graph pattern matching. The authors ap-
ply the language VIATRA2 and demonstrate their approach
using Petri nets. In VTCL, graph transformation rules are
specified using a precondition on the left-hand side and the
postcondition on the right-hand side. Similarly, the Kasai
defines the rules that describe the input sequence as a precon-
dition implying a postcondition.

Using ILOG JRules,[3] and the RETE algorithm, a user has
to specify the rules based on their knowledge of the event
domain the application will process. A Kasai object can

detect rules in the event stream and either present them to the
person for approval or automatically specify the rules and
update the rules engine. The approach for augmenting RETE
described in Schor et al.[4] suggests mechanisms that can be
used to combine the Kasai with RETE.

The traditional RETE algorithm does not support temporal
operators. Several extensions have been proposed to enable
complex event processing using RETE.[5, 6] The Kasai object
natively supports a representation of time. This representa-
tion of time is relative to itself. The charge built through
cycle traversal describes the temporal constraints inherent
within the input sequence. Timing is part of the description
of the rules the Kasai generates.

Intrusion detection continues to be significant problem.[7] De-
tection approaches can be categorized as anomaly detection
or misuse detection. Anomaly detection assumes that intru-
sive activity varies from a norm. Anomaly detection relies on
establishing a statistical model and detecting large variances.
Misuse detection focuses on behavior and detecting unusual
patterns. The authors describe a misuse detection approach
based on state transition analysis by using pattern matching
to detect system attacks. The Kasai object encapsulate the
signature layer and the matching engine into a single object.

3. METHODS
The Kasai dynamically builds a set of rules that describe
the sequence processed to date. A Rule takes the form
subsequence → symbol. The rule Sx → tn denotes that
subsequence Sx predicts symbol tn. Within the Kasai, the
collection of rules is represented as a directed graph. The
nodes of the graph are the rules. The edges are directed
and for a unique path through the nodes. The graph is fully
connected and all nodes are reachable. The first rule added
to the graph is referred to as the Root Rule.
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A Path is an ordering of edges that leads back to the root rule.
Since all rules are connected, any node could be designated
as the root. By convention, the first rule discovered is the
root. However, the best root is the most frequently occurring
rule in the order. Unfortunately, the most frequently occur-
ring rule may not be known at the outset, or, it can change
over time. The Kasai can refactor the graph to reposition the
root rule.

The collection of rule is static but the description of the or-
dering of the edges must include the dynamic aspects of the
series as well. To capture the dynamic aspects, the Kasai
uses a representation of cycles. This enhanced graph, that
captures both static and dynamic aspects, is called a Sarufi.
Figure 4 is an example of a Sarufi. A pattern is seasonal
whenever its Sarufi has cycles greater than one (1).

Each cycle in a Sarufi has a charge. As we traverse the Sarufi,
the charge builds by one each time through the root node.
When the charge reaches the cycle value, the cycle is active.
Once the cycle is traversed, its charge goes back to zero (0).
We define an Ideal Sarufi as one when the root node is in
cycle 1 and there is a path from each node to any other node.
For example, a Sarufi of a genome will be ideal. However,
the Sarufi of weather will not be ideal immediately because
it starts somewhere in the middle of the weather pattern.
Eventually, non-ideal Sarufi will become ideal because the
algorithm refactors the Sarufi as it discovers new patterns in
the data. Systematic patterns result in ideal Sarufi. Random
pattern cannot. When faced with a non-ideal Sarufi, one can
conclude that the input series is random once the Kasai has
processed the complete series.

The Kasai algorithm processes the input sequence by test-
ing the existing set of rules to determine if they predict the
current input. If the prediction is correct, it predicts the next
input. If the prediction is incorrect, it revises the rules. The
algorithm, as described below, is always updating and learn-
ing. It is straightforward to disable the learning mode by
modifying the third ELSE clause of the MAINLINE loop.

The algorithm listed is not an efficient implementation. The
practical implementation uses a multithreaded implementa-
tion with slightly different logic. The multithreaded imple-
mentation is more complex but it produces the same results.
The Kasai algorithm is described in Algorithm 1.

4. DISCUSSION

In this section, we discuss the algorithm’s ability to pro-
cess any type of systematic patterns. We present possible
applications of the algorithms.

 

 

Algorithm 1 The Kasai algorithm 
Globals: 
 activeRule = null 
 predictedsymbol = null 
 cycleOrder = 0 
 firstsymbol = read() 

Mainline: 
 loop: 
  _symbol = read() 
  if _predictedsymbol == null 
   addRule(pwGetState(), _symbol) 
   predict(pwGetState()) 
  else if predictedsymbol = _symbol 
                      activeRule.cycleCount = activeRule.cycleCount + 1 
   activeRule.cycleOrder = cycleOrder 
   predict (pwGetState()) 
  else //predictedsymbol <> _symbol 
   addRule(pwGetState(), symbol) 
   predictedsymbol = null 
   activeRule = null 
  end if 
 until no more symbols; 
end Mainline 

predict(LHS): 
 _psymbol = null 
 _LHS = LHS - first symbol of LHS 
 _rule = pwGetRule(LHS) 
 while (_rule == null) and length(_LHS) > 0 
  _rule = pwGetRule(_LHS) 
  _LHS = _LHS - first symbol of _LHS 
 end while 
 if _rule != null  //rule is found 
  _psymbol = _rule.RHS 
  activeRule = _rule 
 end if 
 predictedsymbol =  _psymbol  
end predict 

pwGetState(): 
 _newLHS = null 
 if firstsymbol == null 
  for all rules in _rule.cycleOrder where _rule.cycleOrder > 0 
   for _rule.cycleCount 
    newLHS = newLHS +_rule.LHS 
  _newLHS = _newLHS + _rule.RHS  //RHS of last rule in cycle 
 else 
  _newLHS = firstsymbol 
  firstsymbol = null 
 end if 
 return _newLHS 
end pwGetState 

pwGetRule(LHS, RHS): 
 return (_rule where _rule.LHS = LHS and _rule.RHS = RHS) or null 
end pwGetRule 

pwGetRule(LHS): 
 return (_rule where _rule.LHS = LHS) or null 
end pwGetRule 

 

Figure 6. Epoch with one season. An infinite series of the
same season where each epoch has only one season. Kasai
represents this type of series as a reflexive pattern.

4.1 Completeness
The Kasai algorithm produces only the rules reflecting the
data series it has processed to date and the rules it produces
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fully reproduce the data series. We can classify seasons and
epochs. A simple season has no sub-seasons. A complex
season contains at least one sub-season. A simple epoch has
no sub-epochs. A complex epoch contains at least one sub-

epochs. Referring to Figure 4, the length of an epoch is the
sum of the cycle traversals the pattern contains. Figures 6-9
represents types of data series patterns the Kasai algorithm
processes.

Figure 7. Epoch with distinct multiple season. (A) An infinite series of multiple seasons of the same length. In this
example, each epoch has 3 seasons [a], [b] and [c]. This case corresponds to a periodic pattern in Kasai. (B) An infinite
series of multiple seasons of different lengths. This is obtained by combining a finite number of case 1 epochs with a simple
season. In this example, each epoch has 3 [a] seasons followed by a [b] season. This case corresponds to a reflexive and
periodic pattern in Kasai. (C) An infinite series of multiple seasons of different lengths. This is obtained by combining a
finite number of a case 1 epochs with a finite number of another case 1 epochs. In this example, each epoch has three [a]
seasons followed by three [b] seasons. This case corresponds to a reflexive and periodic pattern in Kasai. (D) An infinite
series of multiple seasons of different lengths. This is obtained by combining multiple finite case 1’s with a simple season.
This case corresponds to a reflexive, periodic and cyclical pattern in Kasai.

Figure 8. Non-overlapping complex season. (A) An infinite series of complex seasons obtained by combining multiple
finite numbers of case 2 epochs. Each epoch in this example contains multiple complex seasons [a b c a b c], [d e f d e f].
This case corresponds to a periodic and cyclical pattern in Kasai. (B) An infinite series of complex seasons obtained by
combining multiple finite numbers of case 2 epochs with simple seasons. Multiple complex seasons [a b c a b c], and [d e f
d e f], and simple season [k]. This case corresponds to a periodic and cyclical pattern in Kasai. (C)An infinite series of
complex seasons obtained by combining multiple finite numbers of case 2 epochs with simple seasons, with repeating
seasons. This case corresponds to a reflexive, periodic and cyclical pattern in Kasai.
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Figure 9. Overlapping complex season. (A) An infinite series of overlapping complex seasons. In this example, the
complex season [a b c] and and the complex season [a b k] have 2 seasons that overlap ( a and b). This case corresponds to a
periodic and cyclical pattern in Kasai. (B) An infinite series of overlapping and/or non-overlapping complex seasons over
multiple epochs. This is obtained by combining multiple finite numbers of case 4 epochs with simple seasons or case 1 or 2
or 3 epochs. This case corresponds to a reflexive, periodic and cyclical pattern in Kasai.

Since the final case is overlapping and recursive, no sequence
can be formed at a level higher than complex seasons. From
this point on, we find that more complex combinations of
seasons are equivalent to the final case. We conclude that
seasonality in a data series can only contain reflexive, peri-
odic, cyclical and hybrid patterns. Since the Kasai algorithm
creates rules for any reflexive, periodic, cyclical or hybrid
patterns, it also creates a complete set of rules for seasonal
patterns.

4.2 Applications
We consider three types of applications for the Kasai; sin-
gleton, network and engine. A singleton is an application
that uses a single Kasai object to manage on Sarufi. A net-
work organizes a collection of Kasai objects such that the
outputs of some Kasai are the inputs of other Kasai. An
engine is an that combines the Sarufi by direct inspection
and manipulation.

Figure 10. Kasai singleton sequence

4.2.1 Singleton

A singleton Kasai (see Figure 10) produces and manage a
single Sarufi that represents the input sequence it has pro-
cessed to date. There are three Kasai implementation models;
static, dynamic, and managed. The models refer to the way
the Sarufi is updated.

A Static Kasai is trained and used to validate sequences. The
Sarufi does not change in response to sequence. The Kasai
only reports anomalies within the sequence as compared to
the static Sarufi. An example for this model is genome anal-
ysis. In this application, we train the Kasai using a reference
human genome. We can then compare other genomes or
aberrant genomes to classify or to find differences.

A Dynamic Kasai immediately changes the Sarufi to reflect
the patterns in the sequence. An example for this model is
smart cars. A smart car needs to adjust its expectations based
on changing conditions in the environment and on the road.
What was normal some time ago is now anomalous because
of, for example, changes in weather conditions.

A Managed Kasai is a dynamic Kasai under the control of the
client application. The Kasai operates in static mode until the
client application instructs it to operate in a dynamic mode.
The Kasai algorithm is part of the General Purpose Metacog-
nition Engine (GPME).[8–10] The GPME is an AI agent that
enhances the performance of intelligent systems. The GPME
accepts a time-series of observations from sensors. Sensory
input is noisy. Therefore, the GPME creates episodes of ob-
servations. It clusters similar episodes and generates a cluster
centroid episode called a Case. The cases are the inputs into
the Kasai. The Kasai supplies predictions of the future state
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of the environment. The GPME analyzes the anomalies to
determine when the Sarufi should be modified.

A client application can apply the Kasai algorithm in several
broad ways; classification, prediction, memory, and training.

Classification allows the client to analyze a sequence using
a Sarufi to determine if the sequence belongs to the same
class as the original sequence. A related classification is to
produce the Sarufi for various sequences and compare their
Sarufi.

A practical example is intrusion detection. Intrusion detec-
tion systems rely on rules to detect normal behavior. The
vendor of the intrusion detection solution uses statistical
analysis to develop typical profiles of behavior for the cus-
tomers. Using the Kasai algorithm, each intrusion detection
implementation can develop its own set of rules that more
accurately reflects normal and abnormal behavior.

Prediction allows the client to determine the next valid state
given all prior states. In this application, the sequence tends
to be a time-series and the Kasai predicts the future state of
the time-series.

A practical example is stock market prediction. We can de-
sign a symbol that consists of economic and demographic
indicators, and the price of a commodity we are interested
in. Like the GPME example above, some data preparation
is necessary to eliminate noise and to present the data to the
Kasai in a useful form. For example, we might not use actual
values at market close but instead a sequence that denotes
a trend or direction (Up, Down, No change, etc.). We then
supply the indicators and receive the predicted value trend.
In general, where the input domain is very broad, some pre-
processing of the input creates a level of abstraction that
simplifies the Sarufi without losing fidelity.

Memory allows the client to reproduce the original input
sequence exactly. In this application, the Kasai is used to
compress a large non-random data sequence into a more
portable form. A practical example is genome data compres-
sion. Genome data sets contain millions of genes in the order
they are found in the cell. A Kasai trained on genome elimi-
nates redundant sequences in the genome while maintaining
the fidelity of the gene sequences.

Figure 11. Kasai network

Training allows the client to make dynamic objects that are
not naturally dynamic. In this application, the Kasai is used
to train the other object. For example:

• The Rete algorithm is a pattern matching algorithm for
implementing production rule systems. An implemen-
tation of a rules engine fires a rule when it database

indicates that the conditions are met. It is necessary for
a human designer to specify the rules to the rules en-
gine. The Kasai algorithm can be used to identify the
rules that should be implemented in the rules engine.

• An artificial neural network consists of several inter-
connected artificial neurons that work in unison to
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solve a problem. An ANN must be trained through
exposure and tuning using a process called supervised
training. During training, the neural network is ex-
posed to inputs. The designer adjusts the behavior of
the neural network until it produces the correct results.
The Kasai algorithm can be used to train the neural net-
work by observing its inputs and adjusting the neural
network dynamically when its outputs are incorrect.

4.2.2 Network
A Kasai network is an arrangement of Kasai such that the
output of one Kasai is the input of another. A prediction Ka-
sai produces a prediction of the next symbol in the sequence
based on the sequence processed to date.

The example Kasai network depiction in Figure 11 shows
the construction of a unified environment Kasai created from
the combination of other Kasai. On the left, physical sensors
produce sequences that are input into their own assigned Ka-
sai. The outputs of these Kasai are combined to form virtual
sensors. In the example, the combined visual and auditory
Kasai output form a virtual energy sensor. The combined au-
ditory and touch Kasai output form a virtual physical sensor.
The combined touch, taste and scent Kasai output form a
virtual chemical sensor. In turn, the combined energy, phys-
ical and chemical Kasai output form a virtual environment
sensor. This Kasai network enables prediction of the state of
the environment. This example is like the application of the
Kasai in the GPME.

4.2.3 Engine
A Kasai Engine uses a Kasai singleton or network to produce
a baseline set of Sarufi. It then manipulates the Sarufi to pro-
duce new Sarufi. The new Sarufi is the result of operations
on the set of paths defined in the Sarufi.

For example, assume that we have a patient population with
a medical condition we believe is genetic. We also have
a population of individuals without the medical condition.
We wish to know which genes contribute to the condition.
Currently, this type of analysis is performed by analyzing the
genomes. It can be done using a Kasai Engine.

We assign each patient genome to a Kasai resulting in a
Sarufi for each genome. We perform an intersection opera-
tion on all of the Sarufi. The resulting Sarufi (Sc) contains
the genome sequence rules for the condition as well as rules
that represent gene sequences the population shares. We
perform the same exercise on the individuals without the
conditions and produce Sarufi Sp of healthy individuals. We
now take the complement of Sp and Sc and produce a Sarufi
Sd = (Sc – Sp). Sarufi Sd contains the genome sequence
rules for the genes that contribute to the condition.

Sarufi calculus include all set operations since a Sarufi is a
set of paths. The functions include intersection, union, subset
(superset), proper subset (proper superset), not subset, power
set, equality, complement (relative not absolute), difference,
membership, cardinality, and empty set.

Figure 12. Simple reflexive seasonal pattern

5. RESULTS
5.1 Systematic data series
The next figures depict the Sarufi generated for the input
sequences, in graphical form. Figure 12 depict the graphical
form while the set form is: (a→ a), (aaa→ b), (aaab→ a).
The number on the edge is the number of the cycle through
the root node. For example, in Figure 12, the root is (a→
a). Node (aaa→ b) is valid after the second pass through the
root node. In Figure 14, the outermost cycle is valid after the
twelfth pass through the root node.

Figure 13. Simple seasonal pattern
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Each cycle requires a certain charge built up by the traversal
through the earlier cycles. Each cycle’s charge is indepen-
dent of others charges. In Figure 13, there are two cycles
labelled with their respective charge requirements (1 and 3).

After the third traversal through the root node, a charge of 3
is built up that allows travel through cycle 3. Once the root
node is reached, the charge resets.

Figure 14. Complex seasonal pattern with multiple seasons

Figure 15. Compact representation of a Sarufi

In Figure 14, there are four cycles (1, 3, 6 and 12). Each
charge builds independently and resets when the root node is
reached.

The sequence contains several patterns; abc, abcabcabk,
abcabcabkabcabcabkd, and abcabcabkabcabcabkdabcab-
cabkabcabcabkdr. The Sarufi contains a cycle for each one
(1, 3, 6, 12). The Sarufi is a very compact way to represent
information contained in a very long input sequence. If the
sequence contains a pattern and is not random, the Sarufi
contains cycles. Otherwise, at least one node is a dead end.
It matters, therefore, whether the input sequence is known
to be complete. For example, a genome is complete in the
sense that its beginning and ending are known. Other data
series may not be known to be complete.

Earlier, we described the application of the Kasai as a mem-
ory. The representation of Figure 14 can be simplified to the
one shown in Figure 15.

5.2 Chaotic data series
As described above, the Kasai algorithm is designed to pro-
duce rules representing patterns found in systematic time
series of symbolic data. Unlike numeric data, there is no
mathematical relationship between elements of the data se-
ries and the Kasai algorithm does not assume the existence
of such a relationship.
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Figure 16. Chaotic time series

Table 1. A fragment of the Mackey-Glass data depicted in
Figure 16

 

 

t x(t) 
6931 0.868810 
6932  0.868810 
6933  0.868810 
6934  0.885138 
6935  0.890401 
6936 0.895573 
6937 0.900653 
6938 0.905640 
6939 0.910534 
6940 0.915333 
6941 0.920038 
6942 0.924647 
6943 0.929160 
6944 0.933577 
6945 0.937898 
6946 0.942122 
6947 0.946248 
6948 0.950278 

 
Chaotic time series are technically outside the field of use
of the Kasai algorithm. A random time series, where no ele-
ment occurs more than once, creates a Sarufi without cycles;
a set of single use Kasi. For example, a Kasi abc→ d never

fires because [a b c] will not happen again. In addition, the
global charge remains forever at 1 because the root Kasi is
never revisited since there are no cycle. Nonetheless, it is
possible to use the Kasai algorithm with random time series
by applying a preprocessing strategy that generates a symbol
that represents the existing pattern in the time series.

The preprocessing strategy leverages patterns known to exist
in the time series. Consider the Mackey-Glass differential
equation chaotic time series depicted in Figure 16, using
12,000 samples, a delay factor of 17 and a time-step of 0.1
(Generated using Matlab). The resulting time series consists
of 12,000 nonrepeating numbers. However, the graph shows
there is a clear pattern that results from the mathematical
relationship created by the formula.

Because the numbers, x(t), do not repeat, the time series is
chaotic and is not a candidate for use with the Kasai directly.
However, we can take the time series and transform it into a
time series of symbols. Our approach is to create a bucket
labelled by a symbol. For example, assume a bucket size of
3 and the time series S = [1, 2, 3, 4, 5, 6, 7, 8, 9]. We can
create three buckets a = [1, 2, 3], b = [4, 5, 6] and c = [7, 8, 9].
We can then express S = [a, b, c]. Examining Figure 16, we
see that the time series is bound by 1.3 > x(t) > 0.2. We can
create buckets that divide this range. Instead of listing every
element of the bucket, we can define the bucket in terms of
its unique symbol label, an upper bound and a lower bound
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value. We denote the bucket as symbol, lower bound, upper
bound.

Table 1 shows a fragment of the Mackey-Glass data depicted
in Figure 16.

We can subdivide the range [0.2, 1.3] into buckets denoted
symbol, lower bound, upper bound:

• {a, 0.868810, 0.885138}
• {b, 0.890401, 0.905640}
• {c, 0.910534, 0.924647}
• {d, 0.929160, 0.942122}

Given these buckets, the time series fragment in Table 1
transforms into S1 = [aaaabbbbccccdddd· · · ]. We can now
predict the next bucket that the next value will fall into. The
accuracy is a function of the size of the bucket. For example,
if we create a single bucket a, 0.2, 1.3, the time series is S1

= [aaa· · · .] like Figure 1. This is not very useful for predic-
tion. At the other extreme, if we create 12,000 buckets, one
for each number in the time series, then S2 = [abcdefg· · · ]
is random and contains no seasonal patterns we can use to
create Kasi. In fact, the Kasai algorithm creates 12,000 Kasi
with κ = 1 but that never fire because of two reasons. First,
since there are no cycles, their c value never increments past
0 so c is never equal to κ. Second, τ never occurs again. The
series S1 above, with a bucket size of 12,000, creates a single
Kasi that fires all the time. The series S2, with a bucket size
of 1, produces 12,000 Kasi that never fire. The ideal bucket
size is between these two values. The bucket size is, in effect,
the error tolerance of the prediction.

Our experiment compares chaotic times series prediction us-
ing the Kasai algorithm, with ANFIS and NAR implemented
in Matlab. All three techniques in the experiment use the
same Mackey-Glass chaotic time series as input.

Figure 17. ANFIS prediction results

The ANFIS implementation can be found at: https://ww
w.mathworks.com/help/fuzzy/predict-chaotic-t
ime-series-code.html?searchHighlight=mackey%
20glass%20anfis&s_tid=doc_srchtitle. The ANFIS
results are shown in Figure 17. The NAR neural network
implementation can be found at: http://lab.fs.uni-l

j.si/lasin/wp/IMIT_files/neural/nn05_narnet/.
The NARx results are shown in Figure 18.

The preprocessor accepts the tolerance (bucket size) as in-
put. It dynamically creates new buckets as it processes the
Mackey-Glass time series and it creates a time series of sym-
bols that is then input to the Kasai algorithm.
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Figure 18. NARx prediction results

Table 2. The results of experiment
 

 

Error tolerance Predictions made Prediction accuracy 
0.5 8017 67% 
0.1 6529 54% 
0.05 5036 42% 
0.025 5297 44% 
0.0125 5122 43% 
0.00625 3319 28% 

 

Table 2 shows the results of experiment. Error Tolerance
is the bucket size. For example, with tolerance of 0.1, the
range 0 to 1.5 divides into 15 buckets (0.0-0.1, 0.1-0.2, 0.3-
0.4, · · · , 1.4-1.5). Empty buckets are ignored as they are
not represented in the input series to the Kasai algorithm.
When the Kasai algorithm generates a prediction, the predic-
tion is within the tolerance. Otherwise, the Kasai algorithm
generates no prediction. The ideal tolerance (bucket size)
is therefore a function of the problem being solved. Predic-
tions Made is the number of predictions the Kasai algorithm
makes. Prediction accuracy is the percentage of Prediction
Made to the length of the data series (12,000).

The ANFIS and NAR experiments result in errors at most
points of the time series. The ANFIS error range is consistent
across the series. The NARX error worsens as the values gets
further way from the training data set. The Kasai algorithm
does not use a training data set.

Based on the results and comparing the Kasai algorithm’s
performance to ANFIS and NARX, it produces a reasonable
prediction of chaotic time series. However, it is important
to understand the context in which the Kasai algorithm was

developed. It is part of an AI system that combines the
symbolic procedural AI paradigm with the connectionist
paradigm. For example, the ANFIS implementation uses
four prior values to project a future value during the training
phase of the underlying neural network. The four values are
x(t-18), x(t-12), x(t-6) and x(t) to predict x(t+6). A possible
better approach is to have the Kasai algorithm determine the
optimal training data set. This approach should result in an
improved performance for ANFIS or NAR prediction. The
Kasai algorithm is not meant to compete with connectionist
approaches, it is meant to enhance them.

6. CONCLUSION

In this paper, we introduce the Kasai algorithm. The Kasai
algorithm analyzes an input sequence in order to generate
a set of rules that describes the input sequence. The set of
rules, the Sarufi, can then be used to analyze, reproduce,
or compare sequences to each other, or as a memory. The
rules produce an abstract and compact representation of the
data series as a graph. The graph representation supports
several types of operations using the rules that are difficult to
implement at the discrete symbol level. Operations include
comparing data series to each other and using the rules to
predict future states of the data series.
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